Future In-Space Operations Colloquium

Benefits of a Single-Person Spacecraft for Weigh less Operations

Brand Griffin

August 15, 2012

Why Look at a Single-Person Spacecraft?

B Griffin

Past EVA Contributions

Samples

Retrieval/ Repair

Future NASA Plans Emphasize Weightless Operation

Idea is Not New

B Griffin

Bottle Suit

Von Braun

Pod

2001 Sapce Odyssey

1968

MAWS

1985

SCOUT

Univ. of Maryland

FlexCraft

2010

1954

8/15/2012

MAWSII

Robotnaut arms Howe-Griffin

MAWSII Alternative manipulators Howe-Griffin

2010

FlexCraft Cherry Picker

NASA

2010

Single-Person Spacecraft

B Griffin

No Reentry

Weightless Operations

Venues

ISS Operations

Implications of Low Pressure

B Griffin

User

- Range of motion
- Tactile feedback
- Low forces
- •Minimum fatigue
- Comfort

Design

Restraint

Thermal

Puncture

Gas retention

Micrometeoroid

ISS Atmosphere Low pressure space suit 101.3 kPa (14.7 psi) 29.6 kPa (4.3 psi) **Prebreathe** Glove pressure determines suit pressure 29.6 kPa O_2 Prebreathe O₂ (4.3psi) 21 % 100% Purge N₂ 101.3 kPa N_2 (14.7psi) 79 % Risk of Decompression Sickness "Bends"

Less Overhead Time

Better Work Efficiency Index (WEI)

B Griffin

EMU EVA Overhead Time

Direct access without prebreathing minimizes overhead

Many Parts and Adjustments are Required for Proper Suit Fit

B Griffin

One Size Fits All

*Pg 376, US Spacesuits, K. S. Thomas and H. J. McMann

Displays and Controls

FlexCraft

B Griffin

Space Suit

Minimal displays (20 character LCD)
Pressure glove dexterity
Out-of-sight controls
Sleeve mounted mirror
Sleeve mounted checklist
Take hand off job to operate
Displays subject to local lighting

Alphanumeric Display

Cuff Check List

Multiple displays
(full color flat panels)
Bare hand dexterity
Direct visibility of displays
Operate controls while
manipulators on the job
Cockpit-type environment

Getting to and from the Worksite

B Griffin

Hand-over-hand or SSRMS

Fly direct to worksite

Emergency return is less than one minute

Asteroids, Satellite & Telescope

SAFER is for emergency recovery

To be determined:
Propulsion
Tools ?
ORUs
Experiments

Included:
Propulsion
Tools
ORUs
Experiments

Why Walk When You Can Fly

Translation Time

Space Suit

Translation time is...affected by the crewmembers¹

- Spacesuit configuration
- Tools carried
- Tethers which must be moved
- The "landscape" over which one is traveling

Increment 9 PRCM Replacement EVA

Activity	Time (min.)
Hatch to Strella	9
Translation to PMA1	15
Translation to SO	5
Tool config, trans to worksite	14
Stow tools, trans to SO	21
Translation to PMA1	10
Translation to Piers	16

Elapsed EVA Translation times

"MMU can return to the airlock from the furthest point on Space Station (about 146.30 m (480 ft)) in less than 1 minute."2

FlexCraft

MMU ~ FlexCraft Performance

	MMU	FlexCraft
Delta V (m/s)	20*	19.5**
Nom. Range (m)	137	same
Operation (hr)	6	same
Propellant	GN2	same
Prop mass (kg)	5.9	14.2
No. Thrusters	24	same
Thrust (N)	7.56	same
Tank Press (kpa)	20,684	23,442

^{* 13.7} m/s useful delta v

Quicker Translation is Safer and Means More Time on the Job

^{**} At 450 kg mass

¹ Extravehicular Activity Task Work Efficiency, C Looper and Z. Ney, SAE 2005-01-3014

² Role of the Manned Maneuvering Unit for the Space Station, C. E. Whitsett, SAE

Foot Restraint Positioning Required for Two Free Hands

B Griffin

Prime Work Envelope

Vision and both hands in same location for all astronauts

Foot Restraint

Allows two hand operations Reaction point for work loads

ISS

Not all areas EVA accessible
Prescribed translation paths
Requires worksite set up
SSRMS slow (for EVA support 15 cm/sec)
SSRMS not a cherry picker (requires
IVA operations)

Asteroid (Near Earth Object)

Little to no gravity
No translation aids
No EVA propulsion (MMU retired)
Potential suit hazards

Satellite/Telescope

Only HST EVA serviceable No translation aids Potential suit hazards

Low Cost Simulator Training with in-Flight Refreshers

B Griffin

Space Suits

Two Simultaneous Tests.

- Large unique facility
- Many skilled staff
 - **Divers**
 - Suit techs
 - Overhead crane
- Special equipment
- Many test personnel
- Safety issues
- Certification Training
- Pressurized gases
- Control room
- No on-orbit training

FlexCraft

- Conventional Office
- Available projectors
- Available computers
- Simulation software
- •Few test personnel
- No unique training
- No certification
- No safety issues
- On-orbit training
- Laptop platform

Grasp Limits and Protection

B Griffin

Thermal

Even with active heating, touch temperatures are limited to short durations and narrow ranges (-140 to +240°F or -96 to 116°C)¹

PHASE VI GLOVE PALM LIMITS, 9 VOLT HEATERS RADIATION, GRASP, AND HIGH PRESSURE GRASP WITH AND WITHOUT HEATING 2 85 LCVG liner (tricot) 80 LCVG water 75 transport tubing 70 TMG cover 65 (ortho-fabric) 1 PSI GRASP 60 HIGH PRESSURE GRASP 55 WINUTES 45 No Known TMG insulation (aluminized **Grasp Limits** 40 35 30 Min. Grasp Limit 30 **EVA Thermal** 25 **Grasp Limits** 20 GH 15 10 Min. Grasp Limit 10 5 120 280 320 3 G. Bue/EC2 analysis suppor TEMPERATURE (°F) -200 deg. F -100 deg. F 160 deg. F 320 deg. F

Micrometeoroid/Debris and Radiation

- 1. Advanced EVA Roadmaps and Requirements, Richard K. Fullerton, ICES01-2200
- 2. EMU Specification SVHS 7800, Rev BZ, pg 83
- 3. EMU Specification SVHS 7800, Rev BZ, 3.1.1.4.1

B Griffin

Suit-Induced Trauma

Space Suit

Suit induced trauma can occur even with minimal EVA time¹

Delaminated Fingernails²

Swelling, Inflammation

Knee abrasion

FlexCraft No trauma anticipated

(No work loads)

¹ Extravehicular Activity - Challenges in Planetary Exploration, Carl Walz / Mike Gernhardt, 27 February, 2008, Third Space Exploration Conference and Exhibit, Denver, CO 2 Opperman RA, Waldie JM, Natapoff A, Newman DJ, Jones JA, Probability of spacesuit-induced fingernail trauma is associated with hand circumference, Aviation Space Environ Med 2010 Oct; 81(10):907-13.

Operations Flexibility

Mission length with alternating crew members

B Griffin

ISS Operations

Single-Person Spacecraft:

Short or long excursions
Not physically demanding
No strength or conditioning requirements

No day of rest between EVA No suit re-sizing for different crew No suit cleaning

No prebreathe with automated checkout allows rapid and frequent space access

Impact of Oxygen Environment

Space Suits and Host Spacecraft

B Griffin

Fire and Materials in Different Oxygen Environments

	14.7 psi/21% O ₂	5.2 psi/70-100% O ₂	
Data Base	10000 reports	1000 reports	
Fire Event History	High temperature spacecraft events controlled	Apollo 1 (204) &13, hyperbaric chambers	
Materials Control	Minimal	Significant, beta bagging, nonflammable paints/coatings, aluminum foil tape, containment, etc.	
Materials Selection	Numerous options	Severely restricted	
Off-the-shelf Hardware	Minimal modifications	Significant design changes, testing/analysis*	
Fire Detection	Standard	Rapid events	
Fire Suppression	Standard techniques effective	Ineffective	
Propagation Potential/Self- Extinguishment	Most materials self- extinguish	Few materials self- extinguish, rapid propagation	

Dr. Michael D. Pedley, NASA/JSC/ES5, Dennis E. Griffin, NASA/MSFC/EH02

1980 Oxygen Suit Fire

Materials Availability NHB 8060, 1 Flammability Test Data Cumulation Percent of Polymeric Materials Passing 80 70 -Values are very approximate 60 Dr. Michael Pedley JSC/SMD Sept. 1992 20 -10 -70 30 20.9 Percentage Oxygen

Low Pressure Spiral
Glove Drives Host Requirements

1
2
3

^{*} Examples: (from Designing for EVA Applications, Gene Lutz, EVA Systems Project Office. Johnson Space Center, 13 February 2007)

⁻ A \$150 Polar heart rate monitor may require \$200K (or more) of engineering testing, analysis and certification before it can be used in the Space Suit

⁻ An emergency room EKG may require significant modifications to ensure the electrode leads do not detach from the crewmember in the Space Suit

Mass Comparison

B Griffin

1012 kg (with airlock) **844 kg** (without airlock (Orion), 4 EMUs)

440 kg

Shuttle Airlock

Extravehicular Mobility Unit (EMU)

Manned Maneuvering Unit (MMU) (Representative, no longer available)

452 kg (Wet)

Category	Mass (kg)
Structures	121
Propulsion	51
Power	42
Avionics	40
Thermal	21
ECLSS	44
Docking Mechanism	20
GROWTH	41
DRY MASS	379
Non-Prop Fluids	1
Manipulators	58
INERT MASS	437
Total Less Propellant	437
Propellant	14
TOTAL GROSS MASS	452

460 kg (Dry)

The 1965 Cessna 150E 1,010 lb (460 kg)

286 kg (Dry with std equip)

New Skykit Savannah 630 lb (286 kg)

Step Function Capability

B Griffin

"If I asked the people what they wanted, they would have said faster horses."

Henry Ford

Faster Horses?

Better "Weightless" Suits?

New Capability

New Capability