

ISS-Exploration Platform

Reusable Lunar Lander Based at EML1

kevin.e.post@boeing.com

Ben Donahue

Boeing Phantom Works benjamin.b.donahue@boeing.com

September 7, 2011

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

ISS Exploration Platform

International Space Station

The ISS Exploration Platform is a small piece of ISS placed in the Earth – Moon Libration system and used to support Exploration objectives

Reference Previous FISO Presentations:

Raftery - 5/25/11

- NEA mission concept
- Mars Mission concept

Hatfield - 8/10/11

Construction of the ISS-EP

ISS Exploration Platform Purpose & Functions

HSF Exploration Gateway at EML1/2

Primary destination for initial flights beyond LEO

- Provides a habitat destination for MPCV & Soyuz for short duration stays
- Enables early characterization of environment outside radiation belts

"Local" control of Lunar robot assets

- · Allows use of robots that are controlled through tele-presence
- Development of remotely controlled ISRU capabilities critical for Mars exploration

Gateway for a mission to a Near Earth Asteroid

- Enables assembly, test, & checkout of NEA spacecraft prior to departure
- Enables lowest mass mission spacecraft which will shorten trip times to / from NEA

Base for re-usable Lunar lander

- Allows re-use of expensive lunar lander assets
- Enables much more flexible mission operations for lunar access and "anytime return"

Gateway for a human mission to Mars

- Enables assembly, test, & checkout of Mars spacecraft prior to departure
- Enables lowest mass mission spacecraft which will shorten trip times to / from NEA
- Safe orbit for nuclear tug assets

Service Station for SEL Telescopes

- Repair and refueling for high value telescope assets
- Potential assembly site for new generation telescopes

,

ISS Exploration Platform Functional Requirements

	Near Term DSH	Base for Lunar	Gateway for a Mr	Base for Reusser	Gateway for a 1.	Service Station f
Life Support Systems	+	++	+	+	++	+
Docking Interfaces	2	2	3	4	6	3
Robotics - SSRMS			+	+	++	++
Robotics - SPDM / RSS			+	+	++	++
Robotics - Telepresence		++		+	+	++
ACS – RCS Propulsion	+	+	+	+	+	+
ACS – CMGs		+	+	+	+	++
Translation Propulsion	+	+	++	++	++	++
Propulsion Refueling	+	+	++	++	++	++
Contingency EVA			+	+	++	++
Ku / Ka Band Comm		++	+	++	++	++
Electrical Power / Thermal	+	++	+	++	++	++

ISS Exploration Platform Key Driving Requirements

- Man tended; Periodic presence of crew
- ECLSS sized for 3 crew; Surge to 6 crew for 14 days
- Docking support for:
 - Simultaneous: MPCV, Soyuz, Lander, SEP Tug, Cargo module, & Spare
 - IDSS compatible docking ports
- Propulsion / ACS:
 - Station keeping RCS; Refuelable bi-prop
 - Control Moment Gyros
 - Translation up to 300m/s; Refuelable SEP
- Robotics:
 - Berthing & assembly via SSRMS-like arm
 - Repair ops via SPDM / RRM-like end effectors
 - Tele-presence workstation
- EVA:
 - Capability for contingency EVA; 2 EMUs
- Communication:
 - HDTV video transmission
 - High reliability command and control link
- EPS & Thermal:
 - Solar arrays: 30KW; FAST arrays
 - Heat rejection: 20KW; PVTCS-type radiators

ISS Exploration Platform Functional Allocation

International Space Station

Defense, Space & Security

Docking Interfaces

Structural Interfaces

Crew Habitation & Life Support

Airlock (Contingency EVA)

Electrical Power

Comm

Heat Rejection

Attitude Control

SSRMS

Shuttle OBS

SSRMS On SLP

ISS Exploration Platform Four Basic Elements

International Space Station

Docking Hub

- Structural Hub
- Docking Interfaces
- SSRMS Base
- · CCAA

Utility Module

- 30 KW Power
- 20 KW Heat Rejection
- SSRMS launch carrier
- Ku / Ka Band Comm
- CMGs
- · RCS
- Translation Propulsion (Hall Thrusters)
- Airlock for 2 EMUs

Hab Module

- Evolved ECLSS
- Central Computer
- Robotics Control

International Module

- Evolved ECLSS
- RCS
- Translation Prop
- Soyuz Docking

Exploration Platform Derived from Existing Assets

International Space Station

Orbiter External Airlock (2 Avail)

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

LOX / Methane Lunar Lander

- The lunar lander is designed to be reusable and is a pathfinder for the propulsion needed for Mars; The same propulsion system is intended to be used as the ascent stage for the Mars lander
- It is much smaller than Altair; Dry mass of 7t, wet mass of 15t (Altair was ~45t wet)
- The propulsion system is LOX/Methane and is designed to be re-fuelable

Lunar Lander Delivery to the ISS-EP at EML1

- The lander would be launched to EML1 with a commissioning crew using SLS
- Combined lander / MPCV mass is ~42t

Re-Usable Lunar Lander Stationed at EML1

SLS Third Stage Introduction

International Space Station

- A third stage for SLS has several important functions in the exploration architecture
 - Increased SLS performance for C3
 - Kick stage for SEP mission departures from EML1/2
 - Descent stage for a reusable lunar lander

 Fully fuelled, it can provide a Delta V capability of ~4.3 km/s with a 20t payload

Lunar Landing Configuration

- SLS third stage provides propulsion for lunar orbit injection and most of the lunar descent burns
- Lander provides terminal landing and ascent propulsion
- Expensive crew cabin and avionics are re-used

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

Lunar Surface Access

International Space Station

TLI from LEO to LLO

Lunar Site Access and Anytime Return

- During the Constellation program, access to different sites on the lunar surface became a significant issue for the Altair lander
 - This requirement was a driver on Altair because plane change maneuvers were often needed in order to provide the additional mission planning flexibility
- The ISS-EP is in a Lissajous orbit about EML1. Plane changes for lunar surface landing site access are accomplished via the ISS-EP
 - Allowing the lander to depart the platform and enter lunar orbit in the appropriate inclination for the designated landing site

- •To keep the re-usable lander small, it does not include the capability for large plane changes
- •The ISS-EP executes an orbital maneuver by firing RCS into the Z-vector of the orbit. This maneuver inclines the orbit of the ISS-EP in reference to the Earth-Moon libration point X-Y plane and the moon's equator

17

Anytime Return

International Space Station

TEI from LLO to Earth

Lunar Site Access and Anytime Return

- Crew contingency departure requirements were also a driver for Altair
 - With staging in LLO, the ascent must be phased with the on-orbit vehicle
 - The vehicle in LLO needs to phase its departure with the lunar orbit departure point and the Earth target.
 - When EML1 is used as a staging point, it provides a relatively stable platform from which to depart the surface and leave LLO for EML1
- The return to Earth requires targeting the landing site on Earth, but very little phasing from the EML1 departure.

18

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

Lunar Mission Description Staging Events: to Touchdown

- 1. The 14.95mt reusable O2/CH4 lander is emplaced at the L1 node by SLS launch.
- 2. 16.8mt Crew Capsule boosted by the SLS Second Stg and the Third stg (w added cargo).
- 3. Second stage provides half of the dV to reach L1 (2,013 of required 4,015m/s).
- 4. Third stage provides the remaining dV (2,002 m/s) to L1. (its first use)
- 5. From the L1 Hab the Crew oversee the attachment of the Third stage to the Lander
- 6. The partially full Third stg boosts lander into LLO (2nd use),
- 7. Third Stg then provides most of the dV for descent (1,695 of 1,995 m/s required).(3rd use)
- 8. Five km above the surface, lander engines are started, empty Third stage is jettisoned, and the remaining dV (500 m/s) is done by the lander.

Observations:

- -Approach eliminates a large propulsion volume, providing a much smaller, lighter lander
- -Staging eliminates the need for a deep throttling descent engine
- -Reusable lander may be viewed as an ascent stg that does a modest portion of the descent burn
- -The 1960's *Surveyor* robotic lunar lander used this approach; most of its descent dV was done by a separate stage, to allow a much smaller lander.

Copyright © 2010 Boeing. All rights reserved.

Lunar Mission Events Diagram

Post Landing Events and Observations

- 9. Initially the Crew Lives out of the Ascent Crew Cabin
- 10. Later Crew transitions to the 8.6 mt Surface Hab delivered by the Cargo Lander
- 11. Surface power systems deployed by Crew
- 12. After the surface mission, the crew ascends back to L1
- 13. After rendezvous, the lander is refueled and prepared for the next sortie.
- 14. Crew returns to Earth via MPCV Capsule/SM

Observations:

- A complete Lunar sortie can be flown with elements provided by one SLS launch.
- The Lunar surface Hab is a prototype for the inflatable Mars surface Hab.
- The Lunar Lander is a pathfinder for the Mars Lander
- "Reusability" operations (transfer of fuel, consumables, telecommunications, Internal Vehicle Health Monitoring) are demonstrated and refined in Near Earth Space

Lunar Third Stage Upper Stage with Capsule/SM

Lunar System: 3rd Stage

International Space Station

Tank volumes:

LH2 tank 5.5 m dia

- -volume 3247.2 ft3 (91.95 m3)
- -(includes 4% ullage vol)

LO2 tank is 4.4 m dia

- -volume 1108.4 ft3 (31.38 m3)
- -(4% ullage vol)

Tank lengths:

LH2 total tank length: 16.9 ft (5.15 m)

- top dome height: 6.3 ft
- cyl (barrel) height: 4.3 ft
- bottom dome height: 6.3 ft

LO2 total tank length: 10.1 ft (3.08 m)

- top dome height: 5.0 ft
- cyl (barrel) height: 0.1 ft
- bottom dome height: 5.0 ft

Stage Mass:

Total mass: 45,691 kg (45.6 mt)

Dry mass: 4,683 kg

PMF (total prop/total stg); 0.897

Inert mass: 6,001 kg Total prop: 40,781 kg

Usable prop: 39,691

Reserve prop: 1,091 kg

RCS prop: 227 kg

Performance:

Vac Isp: 462.0 (long nozzle RL-10)

Mix ratio: 5.5

Two Engine Version:

Stack T/Wt at 3rd stg ignition: 0.31;

T/W at end: 1.02

Single Engine Version:

Stack T/Wt at 3rd stg ignition: 0.16;

T/W at end: 0.51

B Common ARES I Tank Tooling

Height: 11.8 m

HLV Third Stage Mass vs L1-to-Moon Lunar Lander Mass and LEO-L1 Payload Mass (MPCV and Added)

Baseline 130mt HLV: 5-Seg-SRB/5xSSME Core/J2-X US-269klb Mp: 130nmi 28.6

Lunar Descent Profile

Descent Staging Graphic

Separation and Final Descent

Descent and Landing Profile Third Stage and Lander

Lunars On Surface

Crew Lander Lander Mass – Terminal Desc/Asc

O2/CH4 propulsion, 372 sec Isp, Terminal Descent/ Ascent Stage

International Space Station

1950 m/s

10 m/s

18 m/s

640 m/s

Total Systems Mass Surface Payloads	mass 14.98 mt 0.50 mt	delta-V
Total Lander Mass	<u>14.48 mt</u>	
ew Cabin and Systems	3.15 mt	
Dry Mass	2.72 mt	
Propellant total	8.61 mt	
Propellant Masses	8.61 mt	3,133 m/s
Propel Reserves	0.17 mt	
L1 to LLO Prop Main	n/a	
L1 to LLO RCS	0.02 mt	5 m/s
ninal Desc Propel Main	1.92 mt	500 m/s
Terminal Desc RCS	0.04 mt	10 m/s

5.20 mt

0.04 mt

1.18 mt

0.04 mt

Ascent Propel Main

LLO to L1 Prop Main

Ascent RCS

L1 RCS Prop

Lunar Crew Lander with Ascent Crew Cabin

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

LO2 / Methane CH4 Engines for Descent and Ascent

ISRU derived Methane may be used for Mars ascent descent Developmental programs underway at Aerojet and ATK/COR LO2 residuals left in desc stg tanks available Crew on surface Pump-fed Methane engine provides significant Isp (372-375 s) over press-fed storable engine (320-328) Shared propel tank O2/CH4 main / RCS system in test

Aerojet, T = 5.5 k-lbf, Isp = 350 sec

ATK/XCOR, T = 7.5 k-lbf

O2 / Methane Isp vs Chamber Pressure: 16klbf Thrust, 65 in diam Nozzle

Chamber	Nozzle	Nozzle	Prop	Engine	Isp Vac	Thrust	
Pressure	Exit	Area	Mixture	Total	With	Level	
Рс	Diameter	Ratio	Ratio	length	Losses	Max	
(psia)	(in)	(-)	(-)	(in)	(sec)	(lbf)	
600	65	181	3.2	128	368	16 klbf	
750	65	223	3.2	130	371	16 klbf	
1000	65	296	3.2	133	375	16 klbf	

Lunar Launch Manifest Example – Lander & Capsule

Agenda

- ISS Exploration Platform (ISS-EP)
- Lander Intro & Launch Configuration
- Surface Mission Performance
- Lander Configuration & Mission Description
- LOX / Methane Propulsion System
- Evolution to Mars Crew Lander

Evoution: Mars From Lunar Systems

International Space Station

Linkage: Lunar to Mars Demonstration of Major Elements

- 1. Mars ascent O2 / CH4 propulsion is validated at the Moon (3 days distant)
- 2. Engines, tankage, feed systems, thermal, avionic, power and other systems necessary to ascent and descent are all demonstrated.
- 3. Operational issues are identified and corrected in the near Earth space environment; by the time the Mars lander derivative is in place, high confidence in its capabilities has been achieved.
- 4. (The only major new development required for a Mars mission would be the Mars descent aeroshell).
- 5. This progression begins in the early 2020s and continues into the 2040s. The EML1 base serves as the assembly point, checkout/ refurbishment/ refueling node, technology maturation center and mission return node