

SKYLAB II

Making a Deep Space Habitat from a Space Launch System Propellant Tank

March 27, 2013

Brand Griffin

Habitat for Humans Beyond LEO

Skylab moved astronauts out of the couch

- Post Apollo (used Apollo assets)
- First US Space Station
- 1973 Saturn V launch (fully provisioned)
- Occupied by 3 crews, 3 astronauts each
- Crew duration: 28, 59 and 84 days

- Launch mass 77,088 kg (169,950 lb)
- "Dry" Workshop (3rd stage propellant tank)
- Included telescope, airlock and docking adaptor
- LEO ~ 440 km altitude, 50° inclination
- Last crew 1974, re-entered 1979

Heavy Lift, Large Diameter, Single Launch

Saturn V

Space Launch System

SLS Upper Stage H2 Tank

ISS-Derived Deep Space Habitat

B Griffin

ISS Derived DSH NASA, JSC

ISS Derived Deep Space Habitat

DDT&E Complete, Existing Manufacturing

B Griffin

SLS based on External Tank

External Tank

SLS Family

Flight Experience-135 Launches

Person shows scale of the H2 Tank

DSH would use the same SLS Facility and Personnel

Common Sense Commonality

B Griffin

ISS First Element Launch 24 years ago Technology over 30 yrs old by Cis-lunar launch

MPCV

SLS

Other

Russian, European, Canadian. Japanese, AR&D Etc.

Assessment-by-subsystem

- Structures
- Mechanisms
- •ECLSS
- Communication
- Guidance Nav. and Control
- Software
- Data management
- Crew Systems
- •EVA

What is the relevance of hardware and software to cis-lunar mission? What does is take to make ground assets flight ready?

Are the drawings and specs available?

What re-verification/certification is required?

Access to original suppliers, integrators, and fabrication techniques?

What is the lead time and process for procurement?

What are the cost/benefits?

How are the lessons learned incorporated into the cis-lunar Habitat

Example-Mgt. Decree

Narrow Body

Wide Body

757

Same Cockpits (Same type-rating for pilots)

Volume Comparison

More than Habitable Volume

B Griffin

Skylab (Good Accessibility)

ISS USLab (Destiny) (Cluttered, Difficult Access)

Volume to flight test AMU

Additional DSH volume allows:

- Subsystems designed for servicing
- Improved access to utilities
- Improved access to stowage
- Offload Logistics Module to free up port
- Margin for trash

Mass, Outfitting and Cabin Pressure

B Griffin

LH2 Tank Weighs less than 2 SUVs

Sport Utility Vehicle 2631 kg (5800 lb) SLS LH2 Tank 4200 kg (9,240 lb) 5262 kg (11,600 lb)

Outfitting Weighs less than LH2 Propellant

[•] Three 60 day missions using the Deep Space Habitat Based on ISS Systems, Advanced Exploration Systems, NASA, MSFC, February 14, 2013

Accommodates All Cabin Pressures

External Equipment and Airlock

B Griffin

Saturn V **Instrument Ring** External Hardware Deployable Systems Skylab II Single Person Space Suits Spacecraft **EVA Options**

Habitat Configuration

Incentive for Fewest Launches

Skylab
Single Launch Space Station

ISS 10 yrs 115 flights

* Delta 4 Heavy launches cost \$435 million each (calculated from an Air Force contract of \$1.74 billion for 4 launches)

Launch Cost Savings

5 Fewer Launches or Approximately \$2.175 Billion Savings

	Previou	ıs Cis-luna	r Study	TOTAL		TOTAL		
Year	SLS	Com/Log	ELV/Log		SLS	Com/Log	ELV/Log	
2019	Node 1				Skylab II			
2020	MPCV	Х			MPCV			
2021	MPCV	Х	Х		MPCV			
2022	MPCV	Х	Х		MPCV			
Number	4	3	2	9	4			4
COST \$M	2000¹	1305²	870²	4175	2000			2000
2023	MPLM	Х			MPCV	Х		
2024	MPCV	Х			MPCV	Х		

¹ Assume \$500M per launch (\$65M more than Delta IV Heavy)

² Delta IV Heavy launches cost \$435 million each (calculated from an Air Force contract of \$1.74 billion for 4 launches)

Number of Elements

10 Fewer Elements over first 4 years (Does not include MPLM)

	Previous Cis-lunar Study					TOTAL	Skylab II				TOTAL	
Year	Node 1	MPCV	Bus	Log Mod	MPLM		Skylab II	MPCV	Bus	Log Mod	MPLM	
2019	Х		Х				Х		Х			
2020		Х	XX	Х				Х	Х			
2021		Х	XXX	XX				Х	Х			
2022		Х	XXX	XX				Х	Х			
#	1	3	9	5		18	1	3	4			8
2023	Х		XXX	Х	Х	6		Х	XX	X		4

Possible SLS-Derived Log Mod

Skylab Built During Budget Decline

Why Low Cost

B Griffin

Assumed NASA Budget

Funding Profile

(Representational)

B Griffin

Previous Cis-lunar Study

Skylab II

Fly Now, Upgrade Later

Approach to Space Observatories

B Griffin

Human Servicing at EML2

Instrument

- Similar to Hubble
- Reduces initial cost
- Minimizes development schedule
- Allows low TRL instruments later
- ES L2 popular observatory site
- Very low delta v between EM L2 and ES L2 (~ 20 m/s)
- No upper stage to transit between L2s (RCS)
- Establish servicing capability at E-M L2

Instrument

Instruments

Lunar Science & Satellite Servicing

Jumbo Logistics Vehicle

B Griffin

SLS-Derived Logistics Module

Skylab II DSH

Comparison-Resupply Options

Summary

- Single Launch for 3 missions (no resupply for 4 years)
- Large light weight pressure vessel
- No design changes for SLS launch loads
- Accommodates all cabin pressure options
- Volume (exceeds habitable requirement, allows for stowage and maintenance)
- Multiple vehicles over time (Mars transit Hab, LEO, Asteroid, etc.)
- Early and Sustained Occupancy (no additional elements for 180 day stay)
- Low Cost (and risk)
 - 5 Fewer Launches
 - 10 Fewer Elements
 - Fewer Interfaces
 - Avoid DDT&E for Tank
 - Manufacturing facility and labor in place (no unique procurement or tooling)
 - Commonality with SLS launch system
- Jumbo Logistics Vehicle Option (DHS and ISS)

Supporting Material

Deep Space Habitat Enabling Attributes

Attribute	Rationale
Very low cost	 NASA budget is not expanding Commitments: SLS, ISS, JWST, MPCV, Commercial Space, Soyuz launches, new upper stage, robotic missions, etc. Bow wave delays any new SLS-class Program start Lead time for competitive procurement
Super light weight	 No current upper stage for transfer to EM L2 Cannot afford ISS model of many launches Fewer launches mean early occupancy
Easily maintained	 5 days one way from Earth to EM L2 Reliance on in-situ maintenance (diagnostics, tools, procedure, training, ORU philosophy, sparing, etc.) Ready visual, physical access to ORU and connectors Retain life critical functions while being maintained (redundancy, functional isolation, etc.)
Common Sense Commonality	 "Relevant" as it applies to the mission, maturity, lessons learned Vertical: Sources of common hardware and software Horizontal: Across Cis-lunar elements

Avoid Transporting Tools To and From ES L2

Service at EM L2

B Griffin

Tools-HST Servicing*

- Servicing Mission 1
- 28 Tools Processed for flight
- Servicing Mission 2
- 60 Tools Processed for flight
- 48 First Flight, 12 Reflown
- Servicing Mission 3A
- 95 Tools Processed for flight
- 63 First Flight, 32 Reflown
- Servicing Mission 3B
- 102 Tools Processed for flight
- 49 First Flight, 53 Reflown
- Servicing Mission 4
- 180 Tools Processed for flight
- 114 First Flight, 66 Reflown

2600 lbs and 90 ft³ (1182 kg and 2.6m³) were manifested for suits, tools, carriers and consumables on STS-103 (Mission 3A) for Hubble Space Telescope servicing.

Advanced EVA Roadmaps and Requirements, Richard K. Fullerton, NASA/JSC, ICES2001-01-2200

^{*}HST Crew Aids and Tools: Working in Space Today and Tomorrow, Jill McGuire, HST Crew Aids and Tools Manager

National Aeronautics and Space Administration, Goddard Space Flight Center

NASA Ames Workshop¹: <u>Astronomy Results Applied to SLS</u>

Concepts/Mission	Scientist	Enabled Science/ SLS Benefits	EH/EA ²		
Single Aperture Far Infrared (SAFIR)	D. Lester	 Large monolithic mirror enables higher sensitivity and spatial resolution Resolve galaxies at time when star formation was at a maximum No deployment mechanisms = reduced complexity, risk, testing, lower cost Size enables a design for servicing and instrument upgrade 			
Advanced Technology Large-Aperture Space Telescope (ATLAST)	M. Postman	 Unprecedented sensitivity and angular resolution Investigate formation of Universe, galaxies and planetary systems With occulter, characterize atmospheres of exoplanets Reduced deployment mechanisms = reduced complexity, risk, testing, lower cost 	EA		
Stellar Imager (SI)	K. Carpenter	 UV/Optical Interferometer (200 times resolution of Hubble) High angular & spectral energy resolution with dynamic imaging = breakthrough science Improved understanding of solar and stellar magnetic activity Lager mirror elements = dramatically improved sensitivity and reduced observation times 	EH		
Generation-X	R. Brissenden	 X-ray telescope for black holes, stars and galaxies New insights into the physics of matter in extreme environments Ares V (SLS) provides simplified option to Delta-IV 6 telescope solution SLS diameter provides configuration margin because the telescope is volume limited 	EA		
Submillimeter Probe of the Evolution of Cosmic Structure (SPECS)	S. Rinehart	 Spatial resolution in the far infrared = Hubble optical wavelengths Much simpler deployment than Delta IV packaging = risk reduction and reduced cost Carry more propellant for longer mission life Larger telescopes = more and deeper (fainter) observations 	EH		
Dark Ages Lunar Interferometer (DALI)	J. Lazio	 Cosmological observations of early "Dark Ages" universe High angular & spectral energy resolution with dynamic imaging = breakthrough science Improved understanding of solar and stellar magnetic activity Lager mirror elements = dramatically improved sensitivity and reduced observation times 	EA		
Starshades	T. Hyde	Lifefinder mission using medium resolution spectroscopy of exoplanet atmospheres Requires 8 to 16 m telescope in conjunction with a starshade Low resolution spectroscopy sufficient to detect oceans and continents Resolution (mirror size) is critical	EH		

¹ NASA/CP-2008-214588 Workshop Report on Astronomy Enabled By Ares V, August 2008, S. Langhoff, D. Lester, H. Thronson and R. Correll 2 EH = enhance, EA = enable (assessment made by scientists ate the workshop)

Multiple Docking Dome Option

